تبلیغات
ریاضیات شیرین - مطالب آموزش
 
ریاضیات شیرین
در دنیا لذّتی که با لذّت مطالعه برابری کند نیست.تولستوی
چهارشنبه 21 دی 1390

مقدمه و معرفی


در ریاضیات اتحادها تساوی هایی هستند که به ازای هر مقدار عددی از دامنه خود که بجای متغییرهایشان قرار دهیم همواره برقرار باشند. به عنوان مثال تساوی برای هر x عضو دامنه برقرار است. لذا این عبارت جبری یک اتحاد است، اما تساوی فقط برای x=1 برقرار است. پس این عبارت یک اتحاد نمی باشد. در واقع در مورد یک اتحاد در اصل به یک تساوی بدیهی چون 0=0 می رسیم.
به عنوان مثال در اتحاد مثال زده شده دو طرف ساده شده و تساوی 0=0 حاصل می شود.
به این ترتیب تفاوت میان یک اتحاد جبری و یک معادله جبری در این است که اتحاد جبری به ازای همه مقادیر دامنه برقرار است در صورتی که یک معادله جبری به ازای تعداد محدودی از اعضای دامنه(مجموعه جواب معادله) برقرار است.
عبارات زیر نمونه ای از اتحاد است:


اتحادهای مهم جبری


در میان اتحادهای جبری، برخی از اتحادها بسیار مهم و کاربردی می باشند و در حل معادلات، محاسبات جبری، تجزیه عبارت جبری و... بسیار کاربرد دارند. از این رو دانستن و به کاربردن آنها از اهمیت خاصی برخوردار است. در این قسمت به بررسی این اتحادهای مهم می پردازیم.

اتحاد مربع مجموع دو جمله



مثال:


اتحاد مربع تفاضل دو جمله



مثال:


اتحاد مکعب مجموع دو جمله



مثال:


اتحاد بسط دو جمله ای نیوتن

در دو اتحاد قبل مشاهدی کردید که عبارت مجموع با تفاضل دو جمله چون (a+b)،(a-b) به توان های دو و سه رسیدند. حال این اتحاد برای توانهای طبیعی n هم قابل تعمیم است و به آن اتحاد بسط دو جمله ای نیوتن می گویند.




مثال:



اتحاد مربع سه جمله



مثال:


تعمیم اتحاد مربع چند جمله





مثال:



اتحاد مزدوج



مثال:

  • لازم به توضیح است اگر داشته باشیم a+b آنگاه عبارت a-b را مزدوج عبارت اول یعنی a+b می گویند.

اتحاد جمله مشترک



مثال:


تعمیم اتحاد جمله مشترک




  • این روال به همین ترتیب برای حالات دیگر هم برقرار است.

مثال:




اتحاد مجموع مکعبات دو جمله(اتحاد چاق و لاغر)



مثال:


تعمیم اتحاد مجموع مکعبات دو جمله(اتحاد چاق و لاغر)


پس می توان نتیجه زیر را بیان کرد:

  • لازم به توضیح است که این اتحاد فقط برای حالتی برقرار ست که توان n عدد طبیعی فرد باشد.

مثال:


اتحاد تفاضل مکعبات دو جمله(اتحاد چاق و لاغر)



مثال:


تعمیم اتحاد تفاضل مکعبات دو جمله(اتحاد چاق و لاغر)


پس می توان نتیجه زیر را بیان کرد:

  • لازم به توضیح است این این اتحاد برای هر عدد طبیعی n برقرار است.

مثال:


اتحاد اویلر


  • برهان:



  • صورتی دیگر از اتحاد اویلر:

  • برهان:



  • نتایج اتحاد اویلر:
    • اگر a+b+c=0 آنگاه
    • اگر a=b=c آنگاه

مثال:

همچنین اگر باشد آنگاه داریم:


اتحاد لاگرانژ



مثال:



برگرفته از دانشنامه رشد




نوع مطلب : آموزش، 
برچسب ها : اول، دبیرستان، ریاضی، اتحاد، مربع، مزدوج، سوم،
جمعه 6 اسفند 1389

آموزش ریاضی سوم - معادله خط

.:: معادله های خطی ::.

 

معادله خط: (Line   equation) رابطه ی بین طول (X) و عرض (Y) نقاط واقع بر یک خط را معادله ی آن خط می گویند که به صورت یک تساوی نوشته می شود .

 

مثال: به خط L توجه کنید . نقاط روی این خط قرار دارند .مشاهده می کنیم که طول و عرض این نقاط با هم مساویند . هر نقطه ای که طول و عرض آن مساوی باشد بر خط L قرار می گیرد و هر نقطه ای که روی خط L باشد طول و عرض آن مساوی است.

      

اگر طول هر نقطه را با X و عرض آن را با Y نشان دهیم ، رابطه Y=X را معادله ی خط (L) می نامیم. این تساوی، رابطه ی بین طول و عرض نقاط را مشخص می کند.

 

انواع خط:

در هر یک از تصاویر زیر به خط رسم شده توجه کنید .مختصات نقاط داده شده از خط را بیان کنید و معادله ی خط را بنویسید.

 تصویر 1:

 حل:   

نکته: این نوع خط ها موازی محور طول ها هستند و معادله ی آن ها به صورت Y=b نوشته می شود . (b یک عدد ثابت برای همه ی نقاط می باشد.)

مانند   1=Y=-2  ،    y و ........


تصویر2:  

حل: 

نکته: این نوع خط ها موازی محور عرض ها هستند و معادله ی آن ها به صورت x=a نوشته می شود. (a یک عدد ثابت برای طول همه ی نقاط می باشد.)

مانند   1=X=-2  ،    X و ........


تصویر3: 

حل: 

نکته: این نوع خط از مبدأ مختصات می گذرد و معادله ی آن به صورت  Y=mx نوشته می شود.

مانند:   


 تصویر 4:  

حل: 

نکته: این نوع خط نه موازی محوری است، نه از مبدأ مختصات می گذرد و معادله ی آن به صورت Y=mx+n می با شد. مانند:


دانش آموزان عزیز: انواع دیگری از خط را که به نظرتان می رسد در یک صفحه ی مختصات رسم کنید و در مورد معادله خط مربوط به هر کدام تحقیق کنید.

 

صورت استاندارد معادله خط:

هر رابطه ی درجه ی اول بین X و Y مانند: 1-Y=2x و 6=3x+Y را معادله ی خط گو یند صورت استاندارد معادله ی خط   Y=mx+n می باشد که در آن m و n دو عدد معلوم و مشخص هستند.صورت دیگر معادله ی خط ax+by=c   می باشد که در آن c و b و a سه عدد معلوم می باشند که با هم صفر نیستند و آنرا معادله ی خطی یا معادله ی ضمنی می نامند.

 

رسم خطی که معادله ی آن داده شده است:

برای رسم یک خط راست به ترتیب زیر عمل می کنیم .

الف:مختصات دو نقطه ی دلخواه آن خط را پیدا می کنیم .

ب:جای این دو نقطه را درصفحه ی مختصات مشخص می کنیم .

ج: این دو نقطه را به هم وصل کرده از دو طرف امتداد می دهیم.

 

مثال:در هر یک از تصاویر زیر معادله ی یک خط داده شده است. نمودار هر یک از خط های داده شده را رسم کنید.  

 

 تصویر 1:      Yx

حل:ابتدا عدد های مختلفی به x می دهیم و عدد های نظیر آن ها را برای y به دست می آوریم.

 

        

 


 

تصویر 2:      x+۲y=۴

حل:پیشنهاد:در این معادله ،ابتدا به x عدد صفر را می دهیم و جواب نظیر آنرا برای y بدست می آوریم و سپس بر عکس عمل می کنیم ،به yعدد صفر می دهیم و جواب نظیر آنرا برای x بدست می آوریم.

  

 


 

تصویر 3:     

پیشنهاد: در این معادله، ابتدا به X عدد صفر را می دهیم و جواب نظیر آن را برای Y بدست می آوریم و سپس به X عدد 3 را می دهیم، (مخرج کسر) وجواب نظیر آن را برای Y بدست می آوریم.

   

 


 

تصویر 4:      

حل: این معادله را می توانیم به صورت استاندارد بنویسیم و سپس آن را رسم کنیم:

   

 


 

تصویر 5:   y=۳

حل: این معادله نشان می دهد که عرض همه ی نقاط برابر 3 می باشد.

 


 

تصویر 6:   X=

حل:این معادله نشان می دهد که طول همه ی نقاط برابر 2- می باشد

 


شیب خط: (gradient of a line   

شیب به معنی سرازیری است (مقابل فراز) و در ریاضیات هر چه زاویه ای که خط با محور افقی می سازد بیشتر باشد ، شیب خط بیشتر است و بر عکس هر چه زاویه ای که خط با محور افقی می سازد کمتر باشد ، شیب خط نیز کمتر است.

در این پارک کدام سرسره شیب بیشتری دارد ؟  

در صفحه ی مختصات زیر کدام خط شیب بیشتری دارد؟     

  

با توجه به خط های بالا y=۳x بیشترین شیب را دارد در مقایسه ی ضریب x مشاهده می کنیم که      می باشد یعنی: هر چه ضریب x بیشتر باشد شیب خط  بیشتر است و هر چه ضریب x کمتر باشد شیب خط کمتر است به طور کلی می توان گفت: اگر معادله ی خطی به صورت y=ax+b نوشته شود، عدد a که ضریب x      می باشد، شیب خط نام دارد .

 

عرض از مبدأ: (y-intercept)

فاصله ای که خط از مبدأ گرفته و محور عرض ها را قطع می کند را عرض از مبدأ خط می گویند.

به عبارت دیگر: عرض نقطه بر خورد خط با محور y ها را عرض از مبدأ گویند.

در صفحه ی مختصات زیر محل بر خورد هر خط با محور عرض ها مشخص شده است.

      

اکنون نقطه های A و B و C را با معادله ی مربوط به هر خط مقایسه کنید.

به طور کلی می توان گفت :عدد b در معادله ی y=ax+b را عرض از مبدأ این خط می نامیم .اگر خط از مبدأ مختصات بگذرد عرض از مبدأ آن صفر می شود و معادله ی خط به صورت y=ax در می آید.


نمونه سوالات و نکات المپیادی در مطلب 2 روز دیگر.





نوع مطلب : آموزش، 
برچسب ها : معادله خط، y=x، خط، محور،

به نام خددا

قبل از مطلب باید بگم که حتما" در نظرسنجی بزرگ ما شرکت کنید که در قسمت نظرسنجی وبلاگ وجود دارد.(درباره معلم ها)

در این مطلب اثباتی برای قضیه فیثاغورس می آورم که به اثبات بی کلام معروف است ...


چند اثبات بی کلام رابطه فیثاغورس

گروه ریاضی

 

گروه ریاضی

 

گروه ریاضی

 

گروه ریاضی

 





نوع مطلب : آموزش، 
برچسب ها : فیثاغورث، اثبات فیثاغورث، رابطه فیثاغورث، نظرسنجی،
سه شنبه 23 آذر 1389
به نام خدای یگانه

با توجه به دروس هندسه و  قسمت مهم آن یعنی دایره من نیز مطلبی درباره ی این شکل هندسی در وبلاگ خود قرار دادم/

اشکال هندسی در زندگی همیشه دارای کاربردهای فراوان بوده و برای فعالیتهای انسان الهام بخش و سمبل نیز شده است. دایره یکی از این اشکال است. ابتدایی‌ترین کاربرد دایره ، چرخ و چرخ‌دنده‌ها هستند که از قدیم‌الایام بکار رفته و می‌روند. همچنین ابزار آلات زینتی چون تاج ، گردبند ، خلخال و حلقه‌ها ، کاربردی به اندازه تاریخ بشری دارند. نمونه مثال زدنی حلقه ازدواج است که بین زوجین مبادله می‌شود و این برگرفته از حلقه‌ای است که در دست اهورامزدا در پیکره‌ها و مجسمه‌ها دیده می‌شود.

دایره موجی.

دایره در فرهنگها ، انجمنها ، شهرسازی ، اندیشه‌های هنری و ریشه‌دار بخصوص در ابزار آلات نجومی جایگاه نمادین و کاربردی دارد. در فرهنگ و ادیان قدیم ازجمله بودا ، نماد آسمان ، جهان پاک ، افلاک گردنده و غیر دنیاست در حالی که در مقابل دنیا چهار گوشه و مربع است که به وضوح در بیان اشعار و ادبیات ایرانی بویژه غزلیات عرفانی مشاهده می‌شود.


دایره در هنرهای اسلامی ایران
در هنرهای اسلامی ایرانی دایره‌ها ، به شکل شمس و حلقه نورانی در اطراف سرایمه و بزرگان دین دیده می‌شود. همچنین با توجه به کراهت صورتگری و مجسمه سازی در اسلام و ظریف اندیشی شیعه ، هنرهای اسلامی به شکلهای اسلیمی ، گل و بوته ، نقشهایی ختایی سوق داده شد. اشکال و خطوط و ترکیب رنگ در مینیاتورها ، تذهیبها و فرشها با زینت و ترکیب و نقش نگار پخته‌تری تکامل یافتند.

دایره به شکل شمسه‌های زیبایی تزیین داده شد و شمسه‌ها به صورت منفرد یا در سایر هنرها کاربرد یافت. در خطوط گل و بوته و اشکال اسلیمی و ترکیب رنگ دایره به عنوان پایه‌ای‌ترین ، اصلی‌ترین و اساسی‌ترین شکل بکار گرفته می‌شود. و سیر کلی به سوی مرکز برای وصل فنا نقطه‌ای (سیاه) است. که اختیار را از چشمان بیننده گرفته و با سیر در تابلو به مرکز هدایت می‌کند.
دایره و نقطه سیاه و قرمز
در میان قبایل بدوی و بسیاری از انجمنها و دسته‌های سری قدیم ، سمبل مفاهیمی چون ابدیت ، جاودانگی و مرگ بوده است و دایره سیاره و دوایر متحدالمرکز در تمرینات اساسی ماینه‌تیستها ، هیپنوتیستها و درمانگران حرفه‌ای می‌باشد. دایره و نقطه سرخ که اغلب نشان آفتاب می‌باشد در پرچم و سمبل ملل شرق آسیا نیز مشاهده می‌شود.


هفت شهر
بطلیموس در دو قرن پیش از میلاد بر اساس تفاوت حرارت ، سرزمینهای شناخته شده آن روزگار را به هفت اقلیم تقسیم کرده است از آنجا که تقسیم بندی بطلیموس بر اساس دایره‌های مداری است اقلیمهای هفت گانه را اقلیمهای هندسی نیز نامیده‌اند. به نظر صاحبنظران ، اصطلاح هفت شهر ، هفت اقلیم و هفت وادی که در ادبیات و حکمت ایرانی وارد شده است الهامی از نظریات بطلیموسی را در خود دارد. اجرام آسمانی به دو دسته ثوابت و اجرام متحرک و متغیر تقسیم بندی شد و اجرام متغیر شناخته شده آن روز ، خورشید ، زمین ، بهرام ، تیر ، عطارد ، مشتری و زحل هر کدام در مداری و آسمانی تصور شدند. آسمان اول ، آسمان دوم … تا هفت آسمان.

دایره و نجوم
کره زمین برای شناسایی بهتر به دایره‌های افقی به نام مدار از صفر استوا تا ۹۰ درجه قطبین و دایره‌های عمودی به نام نصف‌النهار تقسیم بندی می‌شود. در علوم قدیم دایره بیشترین کاربرد و برترین جایگاه را در علم نجوم دارد. اولین مدلهای منظومه‌ای بر اساس گردش زهره در فرهنگ اینکاها ، گردش خورشید و کاینات دور کلیسا و زمین ، تا گردش زمین و سیارات دور خورشید در نجوم اسلامی و قوانین حاکم بر حرکت آنها بر روی مسیرهای دایروی بودند. مدلهای اتمی بعد از نظریه جوزف تامسون نیز هسته متمرکز در مرکز (بار مثبت) و الکترونهای متحرک در مدارهای دایروی بود. که به دلیل شباهت به مدل منظومه‌ای مشهور گشت.

بعدها تیکوبراهه ، کپلر ، کپرنیک روی این نظریه‌ها کار کردند. در سال ۱۶۱۹ کپلر سه قانون حرکت سیارات را با استفاده از مشاهدات تیکوبراهه بیان کرد. قوانین کپلر پایه و اساس قوانین نیوتن و مکانیک کلاسیک و مکانیک سماوی شد. در این نظریه مسیر دایره به مسیر بیضوی که خورشید در یک کانون بیضی قرار دارد تغییر یافت. با مطرح شدن فیزیک نوین و فیزیک کوانتومی ، اصل عدم قطعیت و سایر پیشرفتهای تکنولوژیکی مدل منظومه‌ای هسته نیز به مدل ابر الکترونی تبدیل گشت.

نگاهی به رصدخانه مراغه
این رصدخانه در زمره پیشگامان نجوم ایران و دنیای قدیم بوده و جایگاه بی‌نظیری برای خود دارد. مهمترین دوره و مکتب نجومی ایران مکتب مراغه بود که به گفته پروفسور عبدالسلام رصدخانه‌های هنر با وجود رگه‌های هنری اساسا بر پایه رصدخانه‌های اسلامی ساخته شده است. در این میان مکتب مراغه با نام خواجه نصیر‌الدین طوسی با سمت گیری انتقادی نسبت به نظام بطلیموسی به دلیل مشکلات جدی و ناسازگاریهای ذاتی موجود اخترشناسان بر اساس مدل هندسی نجومی ارایه شد که به جفت طوسی معروف گشت. ایجاد حرکت خطی به کمک حرکتهای دورانی یکنواخت است. ساختمان اصلی این رصدخانه به شکل استوانه طراحی شده بود. اکثر وسیله‌های رصدی در آن شکل دایروی داشتند از مهمترین وسیله‌های رصدخانه مراغه می‌توان به موارد زیر اشاره کرد.


وسایل رصد خانه مراغه
سدس فخری که بعدها با اصلاح به دوربینهای تیودولیت معروف گشتند که کاربردهای نقشه برداری دارد. وسیله دیگر ربع بود. این آلت از ربع دایره و عضاده‌ای تشکیل یافته و با آن میل کلی و ابعاد کواکب و عرض بلد را رصد می‌نمودند و بر سطح دیواره شمالی و جنوبی رصدخانه نصب شده بود. وسیله دیگر ذات‌الحلق بود که که به جای ششگانه بطلیموس و نه حلقه ثاون اسکندرانی جامع‌تر بوده است.

آلتی است متشکل از پنج حلقه به ترتیب الف برای دایره نصف النهار که بر زمین نصب شده بود. ب برای دایره معدل النهار ج برای دایره منطقه‌البروج د برای دایره عرض و ه برای دایره میل. از آلات دیگر رصدخانه مراغه ذات‌الجیب و ذات‌السمت بودند که برای تعیین ارتفاع در کلیه جهات مختلف افق بکار رفته می‌شد. ذات‌الربعین که به جای ذات‌الحلق استعمال می‌شد. ذات‌الارسطوانتین و دایره شمسیه از وسایل دیگر رصد خانه هستند.


نگاهی به استفاده از دایره برای رفع مشکلات شهرها و شهرسازی
توسعه شهرها ، تامین نیازمندیهای آنان ، چاره‌جویی برای توسعه‌های آینده شهر ، اتخاذ تصمیماتی که بتواند مشکلات شهری را به حداقل برساند و بالاخره آنکه چگونه رابطه منطقی بین انسان با محیط طبیعتش حفظ شود، به تحولاتی در امر شهرسازی منجر شد. نخستین نظریه در زمینه شهرسازی شخصی به نام هیپوداموس (۴۸۰ سال قبل از میلاد) بود و بعد از آن نظریات و راهکارهای متفاوت شهرسازی بوجود آمد. ولی پیدایش دانش امروزی شهرسازی به قرن نوزده میلادی می‌رسد. از میان نظریه‌های شهرسازی می‌توان نظریه‌های زیر را نام برد.

نظریه متحدالمرکز
در این نظریه الگوی ساخت شهر بر این اصل استوار است که توسعه شهر از ناحیه مرکزی به طرف خارج شهر صورت گرفته و تعداد مناطق متحدالمرکز را تشکیل می‌دهد. این مناطق با ناحیه مشاغل مرکزی شروع شده و بوسیله منطقه در حال تحول احاطه می‌شود.

نظریه قطاعی
تعدیل و تغییر در جهات مختلف این نظریه است. شهرها برای همیشه نمی‌توانند حالت متحدالمرکزی مناطق را حفظ کنند. در این نظریه اجازه خانه به عنوان راهنما مطالعه شهر را عملی می‌سازد. ساخت واحدهای گرانقیمت از کانون اصلی در طول شبکه‌های رفت و آمد ، ساخت واحدهای مسکونی دیگر و ارزان‌تر به سوی فضاهای باز و جابجایی ساختمانهای اداری و تجاری ، توسعه واحدهای مسکونی گرانقیمت را در جهت عمومی عملی سازد. آپارتمانهای لوکس در مجاورت بخشهای تجاری و مسکونی قدیمی بوجود آمده و واحدهای گرانقیمت شهر بطور اتفاقی و نامنظم جابجا نمی‌شوند. راههای شعاعی از مرکز شهر به اطراف کشیده می‌شود و عامل دسترسی به این راهها و قیمت زمینها را در مناطق مختلف شهر تعیین می‌کند.

مدل حلقه‌ای
در این مدل به جای آنکه خطوط اصلی حمل و نقل به صورت خطی گسترش یابد به شکل دایره‌ای و به موازات مرکز شهر ، حواشی ناحیه مرکزی و بافتهای اطراف آن را احاطه می‌کند. و دور تا دور بافت را گره‌های شهری بوجود می‌آورد. و فعالیتها شکل حلقه‌ای یا زنجیره‌ای به خود می‌گیرند.

طرح مکمل مدل کهکشان
بر اساس نظریه ویکتورگروین در بیشتر شهرهای بزرگ کاربرد دارد. شهر از مراکز متعددی تشکیل یافته و هر کدام واحدهای دیگری را بوجود می‌آورد و بوسیله شبکه‌های ارتباطی مشترک و مستقل و منطقه‌ای بافتها به همدیگر مرتبط می‌شوند. مجموعه این بافتها و شبکه‌ها یک شبکه کهکشانی را بوجود می‌آورد. خدمات مرکزی در وسط بافت و جایگاه صنایع در نواحی اطراف شهر و در خارج از بافت اصلی پیش‌بینی شده است.

دایره در مثلثات و فیزیک
از دایره‌های مشهور دیگر دایره مثلثاتی است. دایره مثلثاتی دایره‌ای است با درجه‌بندی و جهت حرکت مشخص که به آن جهت مثلثاتی گویند و آن پادساعت گرد یا عکس ساعت گرد است. شعاع این دایره واحد است و حداکثر مقدار توابع مثلثاتی سینوس یا کوسینوس که در این دایره بدست می‌آید می‌تواند واحد شود. هارمونیها و هماهنگها ، چرخش ، حرکت دورانی ، حرکات پریودیک و دوره‌ای ، حرکات تناوبی ، حرکات رفت و برگشتی در یک مسیر مشخص را می‌توان توسط این دایره و کمیات مثلثاتی برای بیان مکان و زمان و توصیف این حرکات و موقعیت بکار برد.

دایره در ورزشهای باستانی و موسیقی
دایره با توجه به نماد آسمانی و قداست افلاکی در ورزشهای باستانی از جمله زورخانه و گوی بازی ورزشکاران باستانی کار ، در رقص سماء و حلقه گردش و لباس و کلاه آنها ، نیز کاربرد دارد. در مکاتب هادی همچون کومونیسم نیز همچنان که در فیلم بایکوت مشاهده می‌کنیم. به عنوان سمبل بکار رفته است مسیری که از هیچ آغاز شده و در سیر مسیر به هیچ منتهی می‌شود.

اساس موسیقی و هنرهای ادبی شرقی موسیقی دوری است. موسیقی و هنری که انسان را در جای خود از حالی به حالی دگرگون می‌کند از نقطه‌ای شروع شده و او را به سیر در عالم معانی برده و در آخر انسانی ارزشی ، تحول یافته و والا‌مقام و انسانی که شایسته خلیفه الهی است بوجود می‌آورد





نوع مطلب : آموزش، 
برچسب ها : دایره، مطالبی درمورد هندسه، ریاضی در شهر سازی، ریاضی در رصد خانه مراغه،
اینم یه مطلب برای درک بیش تر اعداد اوّل وغربال ارتستن:

غربال ارتستن(اراتستون)
اعدادی که در پایان در سمت راست تصویر نوشته میشود اول اند.




نوع مطلب : آموزش، 
برچسب ها : ارتستن، اراتستون، غربال، تصویر مفهومی غربال،
پنجشنبه 27 آبان 1389
تعریف:
 برای یافتن اعداد اول استفاده میشود که به شکل زیر انجام میشود.

نحوه استفاده از غربال ارتستن:

اعداد اول بین 1 تا 20  را بیابید.

مراحل
1.ابتدا اعداد بین 1تا 20 رامینویسم(در همه ی مراحل مرحله قبل هنوز باقی میماند):

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

2.سپس عدد 1 که نه اول است ونه مرکب خط میزنیم.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

3.بعد از 1 نخستین عدد اوّل 2 است که مضرب های آن به جز خودش را خط میزنیم.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

4.بعد از 2 نخستین عدد اوّل 3 است مضرب های آنرا به جز خودش خط میزنیم.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19


نکته:قبل از انجام مراحل  بایدابتدا ببینیم که آیا مضرب آن اعداد اول در بین اعداد است یا نه؟

اگر بود ادمه میدهیم و اگر نبود بقیه اعداد باقیمانده اوّل اند.

5.عدد اوّل بعدی 5 است که مجذور آن 25 است که در بین اعداد نیست.پس بقیّه اعداد اوّل اند.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19


با تشکّر از شما .لطفا" نظرات،انتقادا وپیشنهادات خود را بیان کنید.




نوع مطلب : آموزش، 
برچسب ها : غربال، ارتستن، اوّل، مرکّب،
امروز میخواهیم در مورد اعداد طبیعی پست بذاریم.

اعداد در کل به چندین نحو، دسته بندی میشوند.رایج ترین نوع آن ،این دسته بندی است: (به ترتیب بزرگی مجموعه ها:طبیعی،حسابی،صحیح،گویا،گنگ و حقیقی)

اعداد طبیعی نیز خود به چندین نحو دسته بندی میشوند که یکی از آنها تقسیم به سه گروه:(اعداد ساده،مرکب و اعداد اول) است.


تعریف:

اعداد ساده:به عدد 1 ،عدد ساده گفته میشود.این عدد تنها عدد عضو این مجموعه است.
ساده


اعداد اوّل:به اعدادی که فقط 2 مقسوم علیه دارند وتنها به یک وخودش بخش پذیرند،اعداد اوّل می گویند.اوّل


اعداد مرکب:به اعدادی که بیش از دو مقسوم علیه دارندوبه غیر از خود و 1 به اعدادی دیگر بخش پذیر هستند عدد مرکب می گویند.
مرکب


خواهید خواند:

روش الگوریتم غربال ارتستن:روشی برای پیدا کردن اعداد اوّل یک سری اعداد است.و....


لطفا" نظرات وپیشنهادات خود را  در قسمت نظرات بیان کنید و لطفا" در نظرسنجی شرکت کنید.





نوع مطلب : آموزش، 
برچسب ها : اعداد طبیعی، اعداد اوّل، اعداد مرکب، اعداد ساده،
 قواعد بخش پذیری بر اعداد طبیعی

برای تقسیم بر بیشتر  اعداد طبیعی قاعده هایی وجود دارد. حتی برای برخی از اعداد بیشتر از سه قاعده به دست آمده است که می توان به کمک آن ها بخش پذیری اعداد را بررسی کرد و باقی مانده ه تقسیم آن ها را نیز تعیین نمود. البته در برخی موارد انجام عمل تقسیم، راحت تر از کاربرد قاعده به نظر می رسد. این به مقسوم و مقسوم علیه بستگی دارد. قاعده تقسیم بر اعداد طبیعی از 1 تا ۱۵ در زیر آورده شده است.

 

قاعده تقسیم بر 1 :  

همه ی اعداد بر یک بخش پذیر هستند.



قاعده تقسیم بر 2 :

عددی بر 2 بخش پذیر است که رقم یکانش بر 2 بخش پذیر باشد. باقی مانده تقسیم هرعدد بر 2 باقی مانده تقسیم رقم یکان عدد بر 2 است.

مثال- همه ی اعداد زوج بر 2 بخش پذیر هستند.



قاعده تقسیم بر 3 :

عددی بر 3 بخش پذیر است که مجموع ارقامش بر 3 بخش پذیر باشد. باقی مانده ی تقسیم عدد بر 3 همان باقی مانده تقسیم مجموع ارقام آن عدد بر 3 است.

مثال- مجموع رقم های عدد 7۵12 برابر 1۵ است و 1۵ بر 3 بخش پذیر می باشد، بنابراین عدد7۵12 بر 3 بخش پذیر است.



قاعده تقسیم بر 4 :

الف) عددی بر 4 قابل قسمت است که دو رقم سمت راست آن بر4 قابل قسمت باشد. باقی مانده تقسیم هر عدد بر 4 مساوی باقی مانده تقسیم دو رقم سمت راست آن عدد بر4 .

مثال- عدد ۵248 بر 4 بخش پذیر است. زیرا 48 بر 4 بخش پذیر است.

ب)عددی بر4 بخش پذیر است که رقم یکان به اضافه ی 2 برابر رقم دهگان آن بر 4 بخش پذیر باشد.

مثال- عدد 1۵68 بر 4 بخش پذیر است. زیرا 20 = 8 + 6 * 2 و 20 بر 4 بخش پذیر می باشد.



قاعده تقسیم بر 5 : 

عددی بر۵بخش پذیر است که رقم یکانش بر۵ بخش پذیر باشد. باقی مانده تقسیم هرعدد بر۵ باقی مانده تقسیم رقم یکان عدد بر ۵ است.

مثال- اعداد 65،  240 و 800  بر5 بخش پذیر هستند.



قاعده تقسیم بر 6 :

عددی بر 6 بخش پذیر است که  بر2 و3 بخش پذیر باشد. ( 3 * 2 = 6)

مثال- عدد 132 هم بر 2 و هم بر 3 بخش پذیراست. پس بر6 نیز بخش پذیر است.



قاعده تقسیم بر 7 :

عددی بر 7 بخش پذیر است که اگر 2 برابر رقم یکان آن را از عددی که از حذف یکان به دست آمده کم کنیم، حاصل بر7 بخش پذیر باشد.(در صورت لزوم این عمل را چندین بار تکرار می کنیم تا به نتیجه برسیم.)

مثال- عدد ۵194 بر 7 بخش پذیر است. زیرا:         

( 8 = 2 * 4)                            5194

                                                                         ( 2= 2 *1)              511  = 8 – 519

                                                                                             49 = 2- 51

49 مضربی از 7 است. بنابراین۵۱۹۴ بر 7 بخش پذیر است.



قاعده تقسیم بر 8 :

الف) عددی بر8  قابل قسمت است که سه رقم سمت راست آن بر 8 قابل قسمت باشد.

مثال- اعداد 45000 و70656 بر 8 بخش پذیرهستند. زیرا سه رقم سمت راست آن ها یعنی صفر و656 بر 8 بخش پذیرهستند.

ب) عددی بر8 بخش پذیر است که 2 برابررقم دهگان به اضافه ی 4 برابر رقم صدگان آن، بر 8 بخش پذیر باشد.

مثال- عدد 65321 بر 8 بخش پذیر است. زیرا 16 = 2 * 2 + 3 * 4 و 16 بر 8 بخش پذیر می باشد.



قاعده تقسیم بر 9 :

عددی بر 9 بخش پذیراست که مجموع ارقامش بر9 بخش پذیر باشد. باقی مانده تقسیم عدد بر9 همان باقی مانده تقسیم مجموع ارقام آن عدد بر9 است.

مثال- عدد 5148 بر 9 بخش پذیراست. زیرا مجموع رقم های آن یعنی 18 بر 9 بخش پذیر است.



قاعده تقسیم بر 10 :

 عددی بر 10 بخش پذیر است که رقم یکان آن صفر باشد.

مثال- اعداد 70  ، 1200 و  810  بر 10 بخش پذیر هستند.



قاعده تقسیم بر 11 :

عددی بر 11 بخش پذیر است که اگر ارقام آن را یکی در میان به دو دسته تقسیم کنیم و مجموع ارقام هر دسته را به دست آوریم و سپس دو عدد به دست آمده را از هم کم کنیم عدد حاصل بر 11 بخش پذیر باشد.

مثال-عدد 5240312 بر 11 بخش پذیر است زیرا:

14 = 2 + 3 + 4 + 5

3 = 1 + 0 + 2

11 = 3 - 14



قاعده تقسیم بر 12 :

عددی بر 12 بخش پذیر است که بر 3 و 4 بخش پذیر باشد.

مثال- اعداد 72 و  120  و 480 بر 12 بخش پذیر هستند.



قاعده تقسیم بر 13 :

عددی بر 13 بخش پذیر است که اگر 4 برابر رقم یکان آن را با عددی که از حذف یکان به دست آمده جمع کنیم، حاصل بر 13 بخش پذیرباشد. (در صورت لزوم این عمل را چندین بار تکرار می کنیم تا به نتیجه برسیم.)

مثال- عدد 247 بر 13 بخش پذیر است. زیرا:

         ( 28 = 7 * 4)                             247

( 8 = 2 * 4)               52 = 28 + 24

13 = 8 + 5



قاعده تقسیم بر 14 :

عددی بر 14 بخش پذیر است که   بر 2 و 7 بخش پذیر باشد. ( 7 * 2 =  14)

مثال- عدد 3۵42 هم بر 2 وهم بر7 بخش پذیر است. پس بر 14 نیز بخش پذیر است.



قاعده تقسیم بر 15 :

عددی بر 1۵ بخش پذیر است که بر 3 و 5 بخش پذیر باشد. (5*3=15)

مثال- عدد 4350 هم بر 3 و هم بر 5 بخش پذیر است. پس بر 4350 نیز بخش پذیر است.



نظرات خود رابیان کنید.





نوع مطلب : آموزش، 
برچسب ها : بخش پذیری بر اعداد طبیعی بین1تا15، قواعد بخش پذیری، آموزش بخش پذیری،





آمار وبلاگ
  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :
امکانات جانبی
 
 
بالای صفحه